Präparative und spektroskopische Untersuchungen an einigen substituierten Trisilanen

Von

F. Höfler

Aus dem Institut für Anorganische Chemie der Technischen Hochschule Graz, Österreich

(Eingegangen am 28. August 1972)

$\begin{array}{c} Preparative ~ and ~ Spectroscopic ~ Investigations ~ of ~ Some ~ Substituted \\ Trisilanes \end{array}$

An improved preparation for Si_3Cl_8 and the preparation and properties of the new trisilane $Si_3(OCH_3)_8$ are described. The vibrational spectra of these compounds and of $Si_3(C_6H_5)_8$ are reported and assigned, considering vibrational coupling. The position of the two $SiSi_2$ stretching vibrations is discussed in detail.

Für Si₃Cl₈ (I) wird eine verbesserte Darstellungsmethode angegeben, Si₃(OCH₃)₈ (II) wird erstmals dargestellt. Die Schwingungsspektren von I, II und Si₃(C₆H₅)₈ werden aufgenommen und unter Berücksichtigung von Kopplungseffekten zugeordnet; insbesondere wird die Lage der beiden SiSi₂-Valenzschwingungen diskutiert.

Die Chemie der Disilane hat in den letzten Jahren durch das Auffinden neuer Synthesemöglichkeiten und Reaktionswege wie auch durch das Studium einiger physikalischer Eigenschaften eine beträchtliche Ausweitung erfahren. Obwohl mehrere dieser Reaktionen auch auf kettenförmige Verbindungen mit drei oder mehr Siliciumatomen übertragen worden sind¹⁻³, befindet sich bereits bei der Klasse der Trisilane eine systematische Bearbeitung noch in den Anfängen. Von den einheitlich substituierten Verbindungen Si_3X_8 ist Si_3Cl_8 am längsten bekannt (seit 1894)⁴, Si₃Br₈ wird nur in einer einzigen kurzen Notiz beschrieben⁵, über die Reindarstellung von Si₃H₈ wird ebenfalls relativ früh berichtet⁶. Mit einigem zeitlichen Abstand folgen die Organylderivate Si₃(C₆H₅)8⁷ und Si₃(CH₃)₈⁸ und schließlich (1965) Si₃F₈⁹. Schwingungsspektroskopische Untersuchungen sind lediglich an Si₃H₈¹⁰, Si₃(CH₃)₈¹¹ und teilweise an Si₃F₈⁹ durchgeführt worden. Die vorliegende Arbeit berichtet über die Darstellung von Si3(OCH3)8 und über die Raman- und IR-Spektren der drei Verbindungen Si₃Cl₈, Si₃(OCH₃)₈ und Si₃(C₆H₅)₈.

Darstellung

Oktachlortrisilan ist als Ausgangsprodukt für Tri- und Oligosilansynthesen¹²⁻¹⁴ von Bedeutung. Das in den Standardwerken¹⁵ beschriebene Verfahren der Chlorierung von CaSi₂ liefert ein Gemisch von etwa 65% SiCl₄, 30% Si₂Cl₆, 4% Si₃Cl₈ und 1% höheren Chlorsilanen. Möglichst niedrige Reaktionstemperatur, geringe Strömungsgeschwindigkeit des Chlors und Zulegieren von katalytisch wirksamen Metallen erhöhen die Ausbeute an längerkettigen Verbindungen. Nach einer von *Hengge*¹⁶ angegebenen Methode kann die Si₂Cl₆-Ausbeute durch Zulegieren von Mn auf 50—60% gesteigert werden. Wir fanden, daß bei Verwendung von technischem CaSi₂, das etwa 10% Fe (als FeSi₂) enthält, besonders große Anteile von Si₃Cl₈ entstehen: das Chlorsilangemisch enthielt 45—48% SiCl₄, 37—39% Si₂Cl₆, 12—15% Si₃Cl₈ und 1—3% höhere Chloride.

Oktamethoxytrisilan, Si₃(OCH₃)₈, entstand in glatter Reaktion bei Zugabe von Si₃Cl₈ zu einer Mischung von CH₃OH und $(C_2H_5)_3N$ in Petroläther gemäß

$$Si_3Cl_8 + 8 CH_3OH + 8 (C_2H_5)_3N \rightarrow Si_3(OCH_3)_8 + 8 [(C_2H_5)_3NH]Cl.$$
 (1)

Si₃(OCH₃)₈, eine farblose, hydrolysenempfindliche Flüssigkeit, wurde durch seine physikalischen und analytischen Daten charakterisiert (s. Exper. Teil). Im NMR-Spektrum (in CCl₄) treten erwartungsgemäß 2 Signale bei $\tau = 6,44$ und 6,50 ppm (1:3) auf. Das UV-Spektrum (in Cyclohexan) zeigt ein ausgeprägtes Absorptionsmaximum bei 223 nm.

Si₃Cl₈ und überschüss. Dimethylamin wurden im Einschlußrohr zur Reaktion gebracht, da sich diese Methode bei der Darstellung von Si₂[N(CH₃)₂]₆ aus Si₂Cl₆ bewährt hatte¹⁷. Die erwartete Umsetzung war

$$Si_3Cl_8 + 16 (CH_3)_2NH \rightarrow Si_3[N(CH_3)_2]_8 + 8 [(CH_3)_2NH_2]Cl.$$
 (2)

Die Aufarbeitung des Reaktionsproduktes ergab zwar die ber. Menge an Dimethylammoniumchlorid, der Si-hältige Anteil besaß jedoch eine komplizierte Zusammensetzung. An niedrigmolekularen Substanzen konnten $HSi[N(CH_3)_2]_3$, $Si[N(CH_3)_2]_4$ und $Si_2[N(CH_3)_2]_6$ isoliert und identifiziert werden. Als Hauptmenge verblieb ein höhermolekularer Kristallbrei, dessen NMR-Spektrum im $(CH_3)_2N$ -Bereich eine größere Anzahl von Signalen aufwies. $Si_3[N(CH_3)_2]_8$ konnte nach diesem Verfahren nicht erhalten werden. Der Reaktionsverlauf dürfte über verschiedene Amin-Additionsverbindungen führen und im Prinzip den von $Urry^{12-14}$ beschriebenen trimethylamin-katalysierten Disproportionierungen von Si₃Cl₈, Si₂Cl₆ und ähnlichen hochchlorierten Verbindungen entsprechen.

Oktaphenyltrisilan wurde nach der von Gilman⁷ angegebenen Vorschrift nach

$$(C_6H_5)_2SiCl_2 + 2 KSi(C_6H_5)_3 \rightarrow Si_3(C_6H_5)_8 + 2 KCl$$
(3)

dargestellt. Molekulargewicht und Reinheit der Substanz wurden über das Massenspektrum überprüft. Es zeigte folgende Haupt-Peaks (gerundete Intensitäten, > 10%): Si $_{3}ph_{8}^{+}$ (11\%), Si $_{2}ph_{5}^{+}$ (36\%), Si $_{2}ph_{4}^{+}$ (35%), Si $_{2}ph_{3}^{+}$ (100%), Si $_{2}ph_{2}^{+}$ (36%), Si $_{2}ph^{+}$ (19%).

Tabelle 1. "SiSi-Valenzschwingungen" in einigen Di- und Trisilanen $Si_n X_{2n+2}$ [cm⁻¹]

	X = H	$X = CH_3$	$X = C_6 H_5$	X = Cl	$X = \text{OCH}_3$
$n=2 \\ n=3$	434 ²² 392, 447 ¹⁰ (468)	403 ^{11,21,23} 370, 456 ^{11, *}	$567 \\ 541, \ 557$	$624 \\ 605, 615$	525 497, 4551

* Mittelwerte aus Raman/IR.

Schwingungsspektren

In den Schwingungsspektren von kettenförmigen Silanen interessieren naturgemäß die Schwingungen des Siliciumgerüstes, da sie Rückschlüsse auf die Bindungsverhältnisse ermöglichen. Unsere vorangegangenen Untersuchungen an substituierten Disilanen^{18–21} haben gezeigt, daß die Schwingungsformen im betrachteten Frequenzbereich von 200—650 cm⁻¹ durch starke mechanische Kopplungen zweier oder mehrerer Koordinaten geprägt sind. Stets sind Schwingungen, denen aus Berechnungen von Potentialenergieverteilungen der stärkste "vSiSi-Charakter" zukommt, noch mehr oder weniger große Anteile von Si-Substituenten-Bewegungen beigemischt. Eine ungekoppelte SiSi-Valenzschwingung liegt nur in Si₂H₆²² vor. Tab. 1 faßt einige Frequenzwerte zusammen.

Das zur Beschreibung der Schwingungen verwendete Valenzkraftfeld ist insofern bemerkenswert, als man auf Wechselwirkungskraftkonstanten zwischen Koordinaten an verschiedenen Si-Atomen nicht verzichten kann^{18, 19}. Unter Berücksichtigung all dieser Besonderheiten ergab sich eine relativ starke Beeinflussung der SiSi-Valenzkraftkonstanten f (SiSi) durch die elektronischen Eigenschaften der sechs Substituenten in einem Si₂X₆-Molekül. Es galt nun, diese bemerkenswerten Substituentenabhängigkeiten auch an einigen Trisilanen zu verfolgen. Ein Trisilangerüst Si₃ X_8 besitzt 27 Schwingungen, von denen alle ramanaktiv und 22 IR-aktiv sind. Sie verteilen sich wie folgt auf die einzelnen Rassen der Punktgruppe C_{2v} : 9 A₁ (Ra p, IR), 7 B₁ (Ra, IR), 5 A₂ (Ra) und 6 B₂ (Ra, IR). Die

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Raman	IR und ber.	Zuordnung
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$\delta \operatorname{SiSi}_2 + \rho \operatorname{SiCl}_3(A_1)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	69 vw		$\rho \operatorname{SiCl}_2 + \rho \operatorname{SiCl}_3(B_2)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		84 ber.	wag SiCl ₂ + ρ SiCl ₃ (B ₁)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		85 ber.	twist $SiCl_2 + \rho SiCl_3 (A_2)$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	116 vs, p		\circ SiCl ₃ + δ_s SiCl ₃ (A ₁)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	100 1		$(\rho \operatorname{SiCl}_3 + \delta_8 \operatorname{SiCl}_3 (B_1))$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	123 m, dp	•	ρ SiCl ₃ + twist SiCl ₂ (A ₂)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$135 \mathrm{m}, \mathrm{p}$		$\delta_{s}SiCl_{2} + \delta_{s}SiCl_{3}(A_{1})$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	149 w, sh		$\delta_{as} SiCl_3 + \rho SiCl_3 (B_2)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		173 ber.	$\delta_{as}SiCl_3$ (A ₂)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		178 ber.	$\delta_{as} SiCl_3 + \rho SiCl_3 + \rho SiCl_2 (B_2)$
$\begin{array}{rcl} 187 \text{ w, p} & & & \delta_{as} \mathrm{SiCl}_3 \ (A_1) \\ 212 \text{ w, dp} & & & \delta_s \mathrm{SiCl}_3 + \mathrm{wag} \mathrm{SiCl}_2 \ (B_1) \\ 232 \text{ vw, p} & & & \delta_s \mathrm{SiCl}_3 + \delta_s \mathrm{SiCl}_2 + \delta \mathrm{SiSi}_2 \ (A_1) \\ 331 \text{ vvs, p} & & 330 \ \mathrm{IR} \ \mathrm{vw} & & \nu_s \mathrm{SiCl}_3 \ (0,37) + \nu_s \mathrm{SiSi}_2 \ (0,29) + \nu_s \mathrm{SiCl}_2 \ (0,17) \ (A_1)^* \\ 404 \ \mathrm{IR} \ \mathrm{vs} & & \nu_s \mathrm{SiCl}_3 \ (B_1) \\ 480 \ \mathrm{vw, p} & & 479 \ \mathrm{IR} \ \mathrm{vs} & & \nu_s \mathrm{SiCl}_3 \ (0,50) + \nu_s \mathrm{SiCl}_2 \ (0,42) \ (A_1)^* \\ 580 \ \mathrm{w, p} & & \nu_{as} \mathrm{SiCl}_3 \ (B_1) \\ & & 594 \ \mathrm{IR} \ \mathrm{vs, b} & \nu_{as} \mathrm{SiCl}_3 \ (B_1) \\ 605 \ \mathrm{w, p} & & \nu_s \mathrm{SiCl}_2 \ (0,48) + \nu_s \mathrm{SiCl}_2 \ (0,34) \ (A_1)^* \\ & & & \epsilon \mathrm{SiCl}_4 \ \mathrm{vs} \ \mathrm{vs} \ \mathrm{sic}_2 \ \mathrm{vs} \ \mathrm{sic}_2 \ \mathrm{vs} \ \mathrm{vs} \ \mathrm{sic}_2 \ \mathrm{vs} \ \mathrm{vs} \ \mathrm{vs} \ \mathrm{sic}_2 \ \mathrm{vs} \ \mathrm{vs} \ \mathrm{sic}_2 \ \mathrm{vs} \ \mathrm{vs} \ \mathrm{vs} \ \mathrm{vs} \ \mathrm{vs} \mathrm{sic}_2 \ \mathrm{vs} \ vs$	$182 \mathrm{w, sh}$		$\delta_{as}SiCl_3$ (B ₁)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	187 w, p		δ_{as} SiCl ₃ (A ₁)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	212 w, dp		δ_{s} SiCl ₃ + wag SiCl ₂ (B ₁)
$\begin{array}{rcl} 331 \ \mathrm{vvs, p} & 330 \ \mathrm{IR} \ \mathrm{vw} & \nu_{s}\mathrm{SiCl_{3}}\left(0,37\right) + \nu_{s}\mathrm{SiSi_{2}}\left(0,29\right) + \nu_{s}\mathrm{SiCl_{2}}\left(0,17\right)\left(.404 \ \mathrm{IR} \ \mathrm{vs} & \nu_{s}\mathrm{SiCl_{3}}\left(\mathrm{B}_{1}\right)\right) \\ 480 \ \mathrm{vw, p} & 479 \ \mathrm{IR} \ \mathrm{vs} & \nu_{s}\mathrm{SiCl_{3}}\left(0,50\right) + \nu_{s}\mathrm{SiCl_{2}}\left(0,42\right)\left(\mathrm{A}_{1}\right)^{*} \\ 580 \ \mathrm{w, tp} & \nu_{as}\mathrm{SiCl_{3}}\left(\mathrm{A}_{1}\right) \\ & 594 \ \mathrm{IR} \ \mathrm{vs, b} & \nu_{as}\mathrm{SiCl_{3}}\left(\mathrm{B}_{1}\right) \\ 605 \ \mathrm{w, p} & \nu_{s}\mathrm{SiCl_{2}}\left(0,48\right) + \nu_{s}\mathrm{SiCl_{2}}\left(0,34\right)\left(\mathrm{A}_{1}\right)^{*} \\ & 610 \ \mathrm{IR} \ \mathrm{ack} \ \mathrm{w} \ \mathrm{sick} \ \mathrm{vcl} \ vc$	232 vw, p		δ_{s} SiCl ₃ + δ_{s} SiCl ₂ + δ SiSi ₂ (A ₁)
$\begin{array}{cccccccc} & 404 \ \mathrm{IR} \ \mathrm{vs} & \nu_{\mathrm{s}} \mathrm{SiCl}_{3} \ (\mathrm{B}_{1}) \\ 480 \ \mathrm{vw}, \mathrm{p} & 479 \ \mathrm{IR} \ \mathrm{vs} & \nu_{\mathrm{s}} \mathrm{SiCl}_{3} \ (0,50) + \nu_{\mathrm{s}} \mathrm{SiCl}_{2} \ (0,42) \ (\mathrm{A}_{1})^{*} \\ 580 \ \mathrm{w}, \mathrm{tp} & \nu_{\mathrm{as}} \mathrm{SiCl}_{3} \ (\mathrm{A}_{1}) \\ & 594 \ \mathrm{IR} \ \mathrm{vs}, \ \mathrm{b} & \nu_{\mathrm{as}} \mathrm{SiCl}_{3} \ (\mathrm{B}_{1}) \\ 605 \ \mathrm{w}, \mathrm{p} & \nu_{\mathrm{s}} \mathrm{SiCl}_{3} \ (0,48) + \nu_{\mathrm{s}} \mathrm{SiCl}_{2} \ (0,34) \ (\mathrm{A}_{1})^{*} \\ & 610 \ \mathrm{IR} \ \mathrm{ack} \ \mathrm{w} \ \mathrm{siccl}_{1} + \mathrm{w} \ \mathrm{siccl}_{2} \ (0,34) \ (\mathrm{A}_{1})^{*} \end{array}$	331 vvs, p	$330~\mathrm{IR}~\mathrm{vw}$	$\nu_{s}SiCl_{3}(0,37) + \nu_{s}SiSi_{2}(0,29) + \nu_{s}SiCl_{2}(0,17)(A_{1})^{*}$
$\begin{array}{rcl} 480 \ \mathrm{vw, p} & 479 \ \mathrm{IR} \ \mathrm{vs} & \nu_{\mathrm{s}}\mathrm{SiCl}_{3} \ (0,50) + \nu_{\mathrm{s}}\mathrm{SiCl}_{2} \ (0,42) \ (\mathrm{A}_{1})^{*} \\ 580 \ \mathrm{w, tp} & \nu_{\mathrm{as}}\mathrm{SiCl}_{3} \ (\mathrm{A}_{1}) \\ & 594 \ \mathrm{IR} \ \mathrm{vs, b} & \nu_{\mathrm{as}}\mathrm{SiCl}_{3} \ (\mathrm{B}_{1}) \\ 605 \ \mathrm{w, p} & \nu_{\mathrm{s}}\mathrm{SiSi}_{2} \ (0,48) + \nu_{\mathrm{s}}\mathrm{SiCl}_{2} \ (0,34) \ (\mathrm{A}_{1})^{*} \\ & & 610 \ \mathrm{IR} \ \mathrm{ach} & \mu \ \mathrm{SiCl}_{2} \ (0,48) + \nu_{\mathrm{s}}\mathrm{SiCl}_{2} \ (0,34) \ (\mathrm{A}_{1})^{*} \end{array}$	-	$404~\mathrm{IR}~\mathrm{vs}$	ν_{s} SiCl ₃ (B ₁)
$\begin{array}{cccc} 580 \text{ w, tp} & \nu_{as} \text{SiCl}_{3} (\text{A}_{1}) \\ & 594 \text{ IR vs, b} & \nu_{as} \text{SiCl}_{3} (\text{B}_{1}) \\ 605 \text{ w, p} & \nu_{s} \text{SiSi}_{2} (0,48) + \nu_{s} \text{SiCl}_{2} (0,34) (\text{A}_{1})^{*} \\ & 610 \text{ IP } \text{ a sh } w \text{ SiCl}_{1} + w \text{ SiCl}_{2} (0,34) (\text{A}_{1})^{*} \end{array}$	480 vw, p	$479 \ \mathrm{IR \ vs}$	ν_{s} SiCl ₃ (0,50) + ν_{s} SiCl ₂ (0,42) (A ₁)*
$\begin{array}{cccc} 594 \text{ IR vs, b} & \nu_{as} \text{SiCl}_3 (B_1) \\ 605 \text{ w, p} & \nu_{s} \text{SiSi}_2 (0,48) + \nu_{s} \text{SiCl}_2 (0,34) (A_1)^* \\ 610 \text{ IP, a sh} & u_{s} \text{SiCl}_2 (-1,-1) \\ \end{array}$	580 w, tp		$\nu_{as}SiCl_3$ (A ₁)
605 w, p $v_{s}SiSi_{2}(0,48) + v_{s}SiCl_{2}(0,34) (A_{1})^{*}$		$594 \mathrm{IR} \mathrm{vs}, \mathrm{b}$	$v_{as}SiCl_3$ (B ₁)
610 TP a ab ab $S(CI) + ab$ $S(CI) / P_{ab}$	605 w, p		ν_{s} SiSi ₂ (0,48) + ν_{s} SiCl ₂ (0,34) (A ₁)*
$v_{10} r_{11}, s s_{11} v_{as} s_{10} r_2 + v_{as} s_{10} r_3 (D_2)$		$610~\mathrm{IR},\mathrm{s~sh}$	$v_{as}SiCl_2 + v_{as}SiCl_3 (B_2)$
615 ber. $\nu_{as} SiSi_2 (B_1)$		615 ber.	$v_{as}SiSi_2$ (B ₁)
617 ber. ν_{as} SiCl ₃ (A ₂)		617 ber.	$\nu_{as} SiCl_3 (A_2)$
$625 \text{ IR m, sh } \nu_{as} \text{SiCl}_3 + \nu_{as} \text{SiCl}_2 (B_2)$		$625~\mathrm{IR}$ m, sh	$\nu_{as} SiCl_3 + \nu_{as} SiCl_2 (B_2)$

Tabell e	2.	Sch	wing	ungsspektrum	\mathbf{von}	Si_3Cl_8	[cm ^{-:}	IJ
-----------------	----	-----	------	--------------	----------------	------------	-------------------	----

* PEV-Anteile.

zugehörigen Schwingungsformen sind — bis auf je eine X_3 Si—Si X_2 -Torsionsschwingung in A_2 und B_2 — aus Tab. 2 am Beispiel des Si₃Cl₈ zu entnehmen.

Oktachlortrisilan. Aus den angeführten Abzähl- und Auswahlregeln ergibt sich bereits, daß das Ramanspektrum hier mehr Informationen bietet als das IR-Spektrum, zumal kovalente Perhalogenverbindungen sich meist durch ein hervorragendes Streuvermögen auszeichnen. Tab. 2 enthält die gemessenen Grundschwingungen. Im Bereich um 120, 180 und 600 cm⁻¹ treten starke Überlappungen von Banden auf, so daß für die Zuordnung neben Polarisationsmessungen auch Modellrechnungen erforderlich waren. Die Symmetriekoordinaten zur Aufstellung der G-Matrix wurden einer Arbeit von *Schachtschneider*²⁴ entnommen. Bei der Berechnung der Normalschwingungen wurde bereits mit Kraftkonstanten, die von unseren Berechnungen an Si₂Cl₆¹⁸ übernommen bzw. entsprechend gemittelt waren, eine gute Simulation der Frequenzabfolge erzielt.

Über die Deformationskraftkonstante eines SiSiSi-Winkels sowie über die Wechselwirkungskraftkonstante einer SiSi-Bindung mit einem SiSiSi-Winkel liegen bisher keine Angaben vor. Wir konnten diese Größen auch nicht durch eine NKA an Si₃H₈ erhalten, da seine spektralen Daten in dem in Frage kommenden Bereich von 150–250 cm⁻¹ unvollständig sind. Eine Abschätzung in Anlehnung an die Werte der Aliphaten führte uns auf 0,2 mdyn/Å für f_{α} und auf 0,05-0,1 mdyn/Å für $f_{r\alpha}$. Die Deformationskraftkonstante des ClSiSi-Winkels am mittelständigen Si-Atom wurde mit 0,10-0,12 mdyn/Å eingesetzt.

Zu einer verbesserten Frequenzanpassung im Bereich der Valenzschwingungen war eine Erniedrigung der SiSi-Valenzkraftkonstante um 0,1-0,2 mdyn/Å auf etwa 2,2 mdyn/Å und der SiCl-Valenzkraftkonstante um etwa 0,1 mdyn/Å auf 2,8 mdyn/Å vorzunehmen. Im besonderen zeigten die Berechnungen die komplizierten Kopplungsbeziehungen auf, die die Valenzkoordinaten $\nu_s SiSi_2$, $\nu_s SiCl_2$ und $\nu_s SiCl_3$ in der Rasse A_1 , $\nu_{as} SiCl_2$ und $\nu_{as} SiCl_3$ in der Rasse B_2 , sowie die Deformationskoordinaten der ClSiSi-Winkel verknüpfen.

Den stärksten Charakter einer $v_s SiSi_2$ besitzt die bei 605 cm⁻¹ liegende Bande, die durch ihr Polarisationsverhalten eindeutig als A₁-Schwingung zu klassifizieren ist (Tab. 2). Bei 480/479 cm⁻¹ folgt eine gekoppelte SiCl-Valenzschwingung, die weitaus stärkste polarisierte Ramanlinie bei 331 cm⁻¹ ist für Si₃Cl₈ besonders typisch. In dieser Schwingung sind wiederum Energieanteile von vSiCl_n- und v_s SiSi₂-Koordinaten enthalten.

Die SiSi₂-Deformationskoordinate überwiegt in der tiefsten A₁-Schwingung bei 55 cm⁻¹. Aus den Schwingungsberechnungen läßt sich entnehmen, daß die zugehörige Deformationskraftkonstante f_{α} nicht wesentlich größer als 0,2 mdyn/Å sein kann; eine engere Eingrenzung ist aber nicht möglich.

 $\nu_{as}SiSi_2$ fällt in die Rasse B_1 und wird nach 610—620 cm⁻¹ berechnet, wenn man für die Wechselwirkungskraftkonstante f_{rr} zweier benachbarter SiSi-Bindungen Erwartungswerte von 0—0,05 mdyn/Å einsetzt. Die zugehörige Bande ist demnach im IR sicherlich durch die sehr intensiven SiCl-Valenzschwingungen verdeckt, im Ramanspektrum wird ihre Intensität geringer sein als jene von " ν_sSiSi_2 " bei 605 cm⁻¹, so daß sie neben dieser nicht aufgefunden wird. Die SiCl-Valenzschwingungen der Rassen B_1 , A_2 und B_2 liegen in den üblichen Frequenzbereichen. Die Zuordnung der Deformationsschwingungen ist in Tab. 2 nach abnehmenden PEV-Anteilen der einzelnen Schwingungsformen vorgenommen worden. Bei einzelnen nicht beobachteten Schwingungen sind berechnete Frequenzwerte eingetragen.

Oktamethoxytrisilan. Die Schwingungsspektren dieser Substanz sind

Raman	IR	Zuordnung
222 s, b, p		$\delta \operatorname{SiOC} + \nu_{s} \operatorname{SiSi}_{2} + \delta_{s} \operatorname{SiO}_{3} (A_{1})$
$385 \mathrm{w}$		
	$412 \mathrm{~s}$	$\delta \operatorname{SiOC} + \delta \operatorname{SiO}_2 + \delta \operatorname{SiO}_3$
	$420 \mathrm{s}$	
$497 \mathrm{~s,~p}$	$495~{ m m}$	$v_{s}SiSi_{2}$ (A ₁)
$552 \mathrm{~vw}$	$551~{ m w}$	$v_{as}SiSi_2$ (B ₁)
	599 vw	
	$625 \mathrm{~vw}$	
$686 \mathrm{w}$	678 s	$\nu_{s} SiO_{3} (B_{1})$
716 vw	$717 \mathrm{m}$	$\nu_{s}SiO_{2}$
757 s, p	$755~{ m sh}$	$\nu_{s}SiO_{3}$ (A ₁)
$780~{ m sh}$	$780 \mathrm{sh}$	$\nu_{as}SiO_2$
$802 \mathrm{m}$	798 vs	$\nu_{as}SiO_3$
	$833 \ \mathrm{sh}$	
$1073 \mathrm{~w}$	1070 vvs, b	νCO
1108 w		
$1186 \mathrm{~w}$	$1185 \mathrm{s}$	$ ho \operatorname{CH}_3$
$1467~{ m w}$	$1462 \mathrm{~w}$	$\delta_{s}CH_{3}, \ \delta_{as}CH_{3}$
$2840 \mathrm{m}$	2838 vs	$\nu_{ m s} { m CH}_3$
	$2915~{ m sh}$	
$2943 \mathrm{w}$	$2940 \ \mathrm{vs}$	$\nu_{as}CH_3$
	$2965~{ m sh}$	

Tabelle 3. Raman- und Infrarotspektrum von Si3(OCH3)8 [cm-1]

in Tab. 3 wiedergegeben. Alle Methylschwingungen und die CO-Valenzschwingungen sind erwartungsgemäß zufällig entartet. Der Bereich von 680—810 cm⁻¹ weist teilweise überlappende Banden auf, die den SiO-Valenzschwingungen zuzuordnen sind. "v_sSiSi₂" tritt — gekoppelt mit δ SiOC — als stärkste Ramanlinie und mittelstarke IR-Bande bei 497/495 cm⁻¹ auf, während v_{as}SiSi₂ (552/551 cm⁻¹) in beiden Spektren nur geringe Intensität besitzt. Um 400 cm⁻¹ liegen gekoppelte SiOCund SiO_n-Deformationsschwingungen, bei 222 cm⁻¹ die mit v_sSiSi₂ und δ_{s} SiO₃ gekoppelte totalsymmetrische SiOC-Deformationsschwingung. Die Kopplungsverhältnisse entsprechen insgesamt den bei Si₂(OCH₃)₆ ausführlich behandelten Wechselbeziehungen²⁰. Zwischen 250 und 400 cm⁻¹ wurden keine IR-Banden gefunden, auch das langwellige Ramanspektrum zeigt im Bereich von 150-380 cm⁻¹ nur die verbreiterte Bande bei 222 cm⁻¹.

Oktaphenyltrisilan. Ähnlich wie bei Si3(OCH3)8 seien auch bei Si₃(C₆H₅)₈ wegen der großen Zahl der auftretenden Schwingungen nur summarische Zuordnungen durchgeführt. Zunächst lassen sich die lage-

[cm⁻¹]

Tabelle 4. Raman- und Infrarotspektrum von $Si_3(C_6H_5)_8 < 1200$ cm⁻¹

Raman	IR	Zuordnung
 178 vs		$\delta_{s}\mathrm{SiC}_{3} + \nu_{s}\mathrm{SiSi}_{2} + \delta\mathrm{SiC}_{2}(\mathrm{A}_{1})$
$188 \mathrm{sh}$		
209 s		$\delta \operatorname{SiC}_2 + \delta \operatorname{Ring}(A_1)$
241 s		$v_{s}SiC_{3} + \delta_{s}SiC_{3} + \delta Ring (A_{1})$
$250~{ m sh}$		$\delta_{as}SiC_3$
335 vw		$\nu_{s} SiC_{3} + \delta_{s} SiC_{3} + \delta Ring (B_{1})$
387	$382 \mathrm{w}$	$\nu_{s} SiC_{2} + \delta Ring$
	415 vw	
436 w	$427 \mathrm{~w}$	
	$461 \mathrm{sh}$	
	$478 \mathrm{m}$	$\delta \operatorname{Ring} + \nu_{as} \operatorname{SiC}_{2,3}$
495 vw	496 w	
$541 \mathrm{ms}$	536 vw	$\nu_{s} \mathrm{SiSi}_{2} + \delta \mathrm{Ring} (\mathrm{A}_{1})$
$557~{ m m}$	$556 \mathrm{w}$	$v_{as}SiSi_2$ (B ₁)
$624 \mathrm{m}$		ph
$683 \mathrm{m}$	$677 \mathrm{w}$	ph
708 w	700 s	$\delta \operatorname{Ring} + \nu \operatorname{Ring} + \nu_{s}, {}_{\mathrm{as}}\operatorname{SiC}_{2,3}$
$743 \mathrm{w}$	$738 \mathrm{~m}$	ph
804 w		
861 vw	852 vw	ph
930 w		ph
1006 vvs	997 w	\mathbf{ph}
1033 s	$1025 \mathrm{ w}$	\mathbf{ph}
	1060 w	ph
1100 m	1093 vs	$ m v Ring + \delta Ring + m v_s, as SiC_{2,3}$
$1162 \mathrm{w}$		ph
1194 w		\mathbf{ph}

konstanten Phenylschwingungen aussondern^{25, 26, 21}; sie sind in Tab. 4 mit ph bezeichnet. Generell liegen bei Phenylsiliciumverbindungen um 1100 und um 700 cm⁻¹ typische Linien oder Liniengruppen. Es handelt sich hiebei um die Pulsations- bzw. Deformationsschwingungen des Phenylringes, welche untereinander und etwas schwächer mit der SiC-Valenzschwingung gekoppelt sind. Schwingungen mit überwiegendem SiC-Valenzcharakter fallen in einen Bereich von 230-500 cm⁻¹, wobei insbesondere die "v_sSiCn" durch Kopplung mit der Phenylringdeformation und mit Gerüstschwingungen recht tief liegen können²¹. In Tab. 4 sind einige wenige Zuordnungen angeführt, die aus Schwingungsberechnungen stammen, in denen die Phenylgruppen durch vereinfachte Modelle repräsentiert waren²⁷.

Das Spektrum von Si₃(C₆H₅)₈ ist dem von Si₂(C₆H₅)₆ sehr ähnlich, charakteristische Unterschiede bestehen nur im Bereich der SiSi-Valenzschwingungen. ν_s SiSi₂ (541/536 cm⁻¹) und ν_{as} SiSi₂ (557/556 cm⁻¹) sind im Raman- und auch im IR-Spektrum klar zu erkennen; ihre relativ geringe Wellenzahlendifferenz ist durch die Kopplungen der symmetrischen Gerüst- und Phenylschwingungen zu erklären. In der SiSi-Valenzkraftkonstante (2,0 mdyn/Å) finden wir gegenüber dem Disilan²¹ wiederum eine Abnahme von 0,1—0,2 mdyn/Å.

Zusammenfassung

In Tab. 1 sind die von uns zugeordneten SiSi-Valenzschwingungen dreier Trisilane den schon bekannten Daten von Si₃H₈ und Si₃(CH₃)₈ beigefügt. Die verschiedenartigen Kopplungen mit Si-Substituentenschwingungen oder mit inneren Schwingungen dieser Substituenten bedingen wie bei den entsprechenden Disilanen einen weiten Frequenzbereich. Die an den Disilanen ermittelten Potentialkonstanten geben mit erniedrigten SiSi-Valenzkraftkonstanten und einigen Zusatzannahmen bei Winkelkraftkonstanten auch die Frequenzen der Trisilane Si₃Cl₈ und Si₃(C₆H₅)₈ gut wieder. Meist überwiegt die Aussagekraft der Ramanspektren; sie können somit in der Chemie kettenförmiger und cyclischer Silane vorteilhaft zur Aufklärung unvorhergesehener Reaktionsabläufe, wie Isomerisierungen^{14, 28} oder Änderungen in der Kettenlänge²⁹ oder der Ringgröße³⁰ herangezogen werden.

Experimenteller Teil

Si₃Cl₈: Die Apparatur entsprach der von *Hengge*¹⁶ beschriebenen Röhrenofen-Anordnung; die Reaktionstemp. betrug anfangs 200° und wurde dann auf 120—150° eingestellt. Die erhaltenen Chlorsilane wurden durch fraktionierende Destillation getrennt; zur besseren Entfernung des mitgerissenen FeCl₃ kann dabei Eisenpulver zugesetzt werden. Si₃Cl₈ siedet bei 13 Torr bei 95 °C.

 $Si_3(OCH_3)_8$: In einem 500-ml-Dreihalskolben werden 38 g (C_2H_5)₃N und 12 g CH₃OH in 250 ml absol. Petroläther (*PÄ*) vorgelegt. Zu dieser auf -75 °C gekühlten Lösung werden unter starkem Rühren 17,3 g Si₃Cl₈, mit 40 ml absol. *PÄ* verdünnt, langsam zugetropft. Nach Beendigung der Reaktion wird auf Raumtemp. erwärmen gelassen, unter N₂ filtriert und der Triäthylammoniumchlorid-Niederschlag mit absol. Petroläther ausgewaschen. Das Lösungsmittel wird unter vermindertem Druck abdestilliert, der Rückstand im Ölpumpenvakuum fraktioniert; nach einem geringen Vorlauf (Sdp._{0,35} 42-70°) gehen bei 74°/0,35 Torr 9 g Si₃(OCH₃)₈ über (59,6%).

F. Höfler:

Die physikalischen Eigenschaften und Elementaranalysen wurden an einer nochmals destillierten Substanzprobe bestimmt: $n_{\rm D}^{20}$ 1,4328, D_4^{20} 1,1241; Molrefraktion nach *Lorentz—Lorenz* 78,05 ber., 76,85 gef.

 $C_8H_{24}O_8Si_3$ (332,5). Ber. C 28,90, H 7,27, Si 25,34. Gef. C 29,16, H 7,56, Si 24,85. MG (ebull.) 329.

Umsetzung von Si₃Cl₈ mit (CH₃)₂NH. Zu 23 g Si₃Cl₈ wurden im Bombenrohr 150 ml Dimethylamin kondensiert, das als Reaktant, HCl-Akzeptor und Lösungsmittel dienen sollte. Nach 2täg. Stehenlassen bei Raumtemp. wird das überschüss. Amin abgezogen, der Rückstand mit absol. $P\dot{A}$ aufgenommen und filtriert. Es wurden 40 g [(CH₃)₂NH₂]Cl ausgewogen (ber. für vollständigen Umsatz: 40,75 g). Die fraktionierende Destillation des Filtrates ergab 9 g HSi[N(CH₃)₂]₃ (Sdp. 141°, ν SiH im IR-Spektrum 2113 cm⁻¹³¹, ν_{s} SiN₃ im Ramanspektrum 618 cm⁻¹) und 1 g Si[N(CH₃)₂]₄ (Sdp.₂₀ 76°, ν_{s} SiN₄ im Ramanspektrum 568 cm⁻¹³²). Aus dem zurückbleibenden Öl schieden sich nach längerem Stehen 4 g Si₂[N(CH₃)₂]₆¹⁷ ab. Weitere Mengen an Disilan sind auf Grund des NMR-Spektrums noch im polymeren Rückstand enthalten.

Si₃(C₆H₅)₈. Eine äther. Lösung von (C₆H₅)₃SiK, bereitet aus 4 g Si₂(C₆H₅)₆ und Na/K-Legierung, wird zu einer äther. Lösung von 1,8 g (C₆H₅)₂SiCl₂ zugetropft und das Gemisch 10 Stdn. gerührt⁷. Der KCl-Niederschlag enthält noch Phenylsiliciumverbindungen und wird daher nach Filtration mehrmals mit Benzol extrahiert. Aus den vereinigten Lösungen werden durch Einengen 1,1 g schwerlösliches Si₂(C₆H₅)₆ zurückgewonnen. Si₃(C₆H₅)₈ wird durch Zusatz von PA ausgefällt und besitzt nach zweimaligem Umkristallisieren aus Äthanol/Benzol Schmp. 311 °C.

Die Ramanspektren wurden mit einem Perkin-Elmer-221-Gerät, die Ramanspektren mit einem Spex-Ramalog (He/Ne-Laseranregung) aufgenommen. Der Dank des Autors gilt Herrn Prof. Dr. E. Hengge, Graz, für die Unterstützung mit Institutsmitteln, dem Fonds zur Förderung der wissenschaftlichen Forschung, Wien, für die Bereitstellung von Geräten und Herrn Dr. K. Rinke, Münster/W. für die Aufnahme eines Massenspektrums. Die Berechnungen wurden am Rechenzentrum Graz durchgeführt.

Literatur

¹ H. Gilman, W. H. Atwell und F. K. Cartledge, Adv. Organomet. Chem. 4, 1 (1966).

² M. Kumada und K. Tamao, Adv. Organomet. Chem. 6, 19 (1968).
 ³ J. E. Drake, N. Goddard und N. P. C. Westwood, J. Chem. Soc. A 1971, 3305.

⁴ L. Gattermann und K. Weinlig, Ber. dtsch. chem. Ges. 27, 1943 (1894).

⁵ A. Besson und L. Fournier, C. R. hebd. Sé. Acad. Sci. [Paris] 151, 1055 (1910).

⁶ A. Stock und C. Somieski, Ber. dtsch chem. Ges. 49, 111 (1916).

⁷ H. Gilman, T. C. Wu, H. A. Hartzfeld, G. A. Guter, A. G. Smith, J. J. Goodman und S. H. Eidt, J. Amer. Chem. Soc. **74**, 561 (1952). ⁸ U. G. Stolberg, Angew. Chem. **74**, 696 (1962); Chem. Ber. **96**, 2798 (1963).

⁹ P. L. Timms, R. A. Kent, T. C. Ehlert und J. L. Margrave, J. Amer. Chem. Soc. 87, 2824 (1965).

¹⁰ F. Fehér und H. Fischer, Naturwiss. 51, 461 (1964).

¹¹ U. G. Stolberg und H. P. Fritz, Z. anorg. allgem. Chem. 330, 1 (1964).

¹² A. Kaczmarczyk, M. Millard, J. W. Nuss und G. Urry, J. inorg. nucl. Chem. **26**, 421 (1964).

¹³ A. Kaczmarczyk, J. W. Nuss und G. Urry, J. inorg. nucl. Chem. 26, 427 (1964).

¹⁴ G. Urry, Acc. Chem. Res. 3, 306 (1970).

¹⁵ G. Brauer, Handbuch der präpar. anorgan. Chemie, 2. Aufl., S. 607. Stuttgart: Enke. 1960; H. S. Booth, Inorganic Syntheses, Vol. 1, S. 42. New York: McGraw-Hill. 1939.

¹⁶ E. Hengge und M. Abou Shaban, Allgem. Prakt. Chem. 18, 393 (1967).

¹⁷ E. Hengge, H. D. Pletka und F. Höfler, Mh. Chem. 101, 325 (1970).

¹⁸ F. Höfler, W. Sawodny und E. Hengge, Spectrochim. Acta **26** A, 819 (1970).

¹⁹ F. Höfler, S. Waldhör und E. Hengge, Spectrochim. Acta 28 A, 29 (1972).

²⁰ F. Höfler und E. Hengge, Mh. Chem. 103, 1513 (1972).

²¹ F. Höfler, in Vorbereitung.

²² J. L. Duncan, Spectrochim. Acta 20, 1807 (1964).

²³ B. Fontal und T. G. Spiro, Inorg. Chem. 10, 9 (1971).

²⁴ J. H. Schachtschneider und R. G. Snyder, Spectrochim. Acta 19, 117 (1963).

²⁵ H. Kriegsmann und K. H. Schowtka, Z. physik. Chem. 209, 261 (1958).

²⁶ A. L. Smith, Spectrochim. Acta **23** A, 1075 (1967).

²⁷ H. J. Becher und F. Höfler, Spectrochim. Acta 25 A, 1703 (1969).

²⁸ M. Ishikawa und M. Kumada, Chem. Comm. **1970**, 157.

²⁹ D. Wittenberg, M. V. George und H. Gilman, J. Amer. Chem. Soc. 81, 4812 (1959).

³⁰ M. Ishikawa und M. Kumada, Chem. Comm. 1969, 567.

³¹ C. J. Attridge, J. organometal. Chem. 13, 259 (1968).

³² H. Bürger und W. Sawodny, Inorg. nucl. Chem. Letters 2, 209 (1966).